Given:
The magnitude of force F1 is: F1 = 440 N
The magnitude of force F2 is: F2 = 370 N
The angle that force F1 makes with the car's initial direction is: θ₁ = 10° Counterclockwise
The angle that force F2 makes with the car's initial direction is: θ₂ = 30° Clockwise
To find:
a) The magnitude and the direction of the resultant vector of these two forces.
b) The acceleration of the car.
To find:
a)
The following diagram indicates the components of the forces acting on the car.
The resultant force acting in the up direction is:
[tex]F_y=F_1cos\theta_1+F_2cos\theta_2[/tex]
Substituting the values in the above equation, we get:
[tex]\begin{gathered} F_y=440\text{ N}\times cos10\degree+370\text{ N}\times cos30\degree \\ \\ F_y=440\text{ N}\times0.9848+370\text{ N}\times0.8660 \\ \\ F_y=753.732\text{ N }j \end{gathered}[/tex]
The resultant force acting in the up direction is 753.732 Newtons. j in the above equation represents the up direction of the force.
The resultant force in the right/left direction is:
[tex]F_x=-F_1sin\theta_1+F_2sin\theta_2[/tex]
Substituting the values in the above equation, we get:
[tex]\begin{gathered} F_x=-440\text{ N}\times sin10\degree+370\text{ N}\times sin30\degree \\ \\ F_x=-440\text{ N}\times0.1736+370\text{ N}\times0.5 \\ \\ F_x=108.616\text{ N }i \end{gathered}[/tex]
The resultant force acting in the right direction is 108.616 Newtons. i in the above equation represents the right direction of the force.
Now, the total resultant force is given as:
[tex]\begin{gathered} F=F_x+F_y \\ \\ F=108.616\text{ N }i+753.732\text{ N }j \end{gathered}[/tex]
Now, the magnitude of the resultant force is calculated as:
[tex]\begin{gathered} |F|=\sqrt{108.616^2+753.732^2} \\ \\ |F|=761.517\text{ N} \\ \\ |F|\approx761.52\text{ N} \end{gathered}[/tex]
Thus, the magnitude of the resultant force is 761.52 Newtons.
Now, the direction of the resultant force (to the right of the up/forward direction) can be determined as:
[tex]\begin{gathered} tan\theta=\frac{|F_x|}{|F_y|} \\ \\ \theta=tan^{-1}(\frac{\lvert F_{x}\rvert}{\lvert F_{y}\rvert}) \end{gathered}[/tex]
Substituting the values in the above equation, we get:
[tex]\begin{gathered} \theta=tan^{-1}(\frac{108.616}{753.732}) \\ \\ \theta=tan^{-1}(0.1441) \\ \\ \theta=8.19\degree \\ \\ \theta\approx8.2\degree \end{gathered}[/tex]
The direction of the resultant force is 8.2° from the up/forward direction of the initial motion of the car.
b)
By using Newton's second law of motion, the acceleration of the car can be calculated as:
[tex]\begin{gathered} |F|=ma \\ \\ a=\frac{|F|}{m} \end{gathered}[/tex]
Substituting the values in the above equation, we get:
[tex]\begin{gathered} a=\frac{761.52\text{ N}}{3000\text{ kg}} \\ \\ a=0.2538\text{ m/s}^2 \end{gathered}[/tex]
The acceleration of the car in the direction of the resultant force is 0.2538 m/s².
Final answer:
a) The magnitude of the resultant force is 761.52 Newtons in the directio of 8.2° from the up/forward direction of the initial motion of the car.
b) The acceleration of the car is 0.2358 m/s².