Given:
A tree stump considering a right cylinder.
The circumference of the right cylinder, C=209 inches.
The volume of the right cylinder, V=33370 cubic inches.
Required:
We need to find the height of the stump in feet.
Explanation:
The base of the right cylinder is a circle.
Consider the formula to find the circumference of the circle.
[tex]C=2\pi r[/tex]Substitute C = 209 in the formula.
[tex]209=2\pi r[/tex][tex]Divide\text{ both sides by }2\pi.[/tex][tex]\frac{209}{2\pi}=\frac{2\pi r}{2\pi}[/tex][tex]\frac{209}{2\pi}=r[/tex][tex]We\text{ get the radius of the tree stump, r=}\frac{209}{2\pi}.[/tex]Consider the formula to find the volume of the right cylinder.
[tex]V=\pi r^2h[/tex][tex]Substitute\text{ V=33370 and r =}\frac{209}{2\pi}in\text{ the formula.}[/tex][tex]33370=\pi(\frac{209}{2\pi})^2h[/tex][tex]33370=\pi\times\frac{209^2}{2^2\pi^2}\times h[/tex][tex]33370=\frac{209^2}{4\pi^}\times h[/tex]Solve for h.
[tex]33370\times\frac{4\pi}{209^2}=h[/tex][tex]33370\times\frac{4\times3.14}{43681}=h[/tex][tex]9.5952=h[/tex][tex]h=9.5952in[/tex]We know that 1 foot = 12 inches.
Divide the height by 12 to get convert from inches to feet.
[tex]h=\frac{9.5952}{12}feet[/tex][tex]h=0.8feet[/tex]Final answer:
The height of the stump is 0.8 feet.