Let's begin by identifying key information given to us:
The altitude BT bisects Line AC to form a right-angle (90 degrees)
[tex]\angle BTA=(\frac{1}{3}x-7)[/tex]Since we know that angle BTA is 90 degrees, we proceed to solve as shown below:
[tex]\begin{gathered} \angle BTA=90^{\circ} \\ (\frac{1}{3}x-7)=90 \\ \text{Add ''7'' to both sides, we have:} \\ \frac{1}{3}x=90+7 \\ \frac{1}{3}x=97 \\ x=97\times3=291 \\ x=291 \end{gathered}[/tex]