Respuesta :

Given:

[tex]\cos(\frac{\pi}{2}-x)=\sin x[/tex]

Required:

To find whether the given statement is true or false.

Explanation:

Let,

[tex]\cos(A-B)=\cos A\cos B+\sin A\sin B[/tex]

Therefore,

[tex]\cos(\frac{\pi}{2}-x)=\cos\frac{\pi}{2}\cos x+\sin\frac{\pi}{2}\sin x[/tex]

But

[tex]\begin{gathered} \cos\frac{\pi}{2}=0 \\ \\ \sin\frac{\pi}{2}=1 \end{gathered}[/tex]

So,

[tex]\begin{gathered} \cos(\frac{\pi}{2}-x)=0+(1)\sin x \\ \\ =\sin x \end{gathered}[/tex]

Final Answer:

The given statement is TRUE.

[tex]\cos(\frac{\pi}{2}-x)=\sin x[/tex]

ACCESS MORE
EDU ACCESS