Respuesta :

Step 1

Given;

Step 2

If you plot the point P in the xy-plane, you see it lies in Quadrant II. Draw the segment from the origin O to P and find its length:

[tex]\begin{gathered} r=\sqrt{(-5)^2+(7)^2} \\ r=\sqrt{74} \end{gathered}[/tex][tex]cos\theta=\frac{x}{r}=\frac{-5}{\sqrt{74}}[/tex][tex]\begin{gathered} The\text{ exact value of cos}\theta=\frac{-5}{\sqrt{74}}\times\frac{\sqrt{74}}{\sqrt{74}}=\frac{-5\sqrt{74}}{74} \\ Numerical\text{ value to 2 decimal places=-0.58} \end{gathered}[/tex]

Answer;

[tex][/tex]

Ver imagen AlaynnaU357997
ACCESS MORE
EDU ACCESS
Universidad de Mexico