Respuesta :

Solution

For this case we can do the following:

a+ b= 15

[tex]\cos 60=\frac{a}{x},\sin 60=\frac{y}{x}[/tex][tex]\cos 30=\frac{b}{z},\sin 30=\frac{y}{z}[/tex][tex]\tan 60=\frac{y}{a},\tan 30=\frac{y}{b}[/tex][tex]\frac{\tan 60}{\tan 30}=\frac{b}{a}[/tex]

b=3a

Replacing in the first equation we got:

a + 3a = 15

4a = 15

a = 15/4

b= 45/4

Then we can find the value of y on the following way:

y= a *tan 60 = 15/4 * tan 60

[tex]y=\frac{15\sqrt[]{3}}{4}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico