Solution
For this case we can do the following:
a+ b= 15
[tex]\cos 60=\frac{a}{x},\sin 60=\frac{y}{x}[/tex][tex]\cos 30=\frac{b}{z},\sin 30=\frac{y}{z}[/tex][tex]\tan 60=\frac{y}{a},\tan 30=\frac{y}{b}[/tex][tex]\frac{\tan 60}{\tan 30}=\frac{b}{a}[/tex]b=3a
Replacing in the first equation we got:
a + 3a = 15
4a = 15
a = 15/4
b= 45/4
Then we can find the value of y on the following way:
y= a *tan 60 = 15/4 * tan 60
[tex]y=\frac{15\sqrt[]{3}}{4}[/tex]