Express log^2A in terms of the logarithms of prime numbers

Solution
[tex]A=\frac{\sqrt[]{3}\sqrt[4]{125}}{7^3}[/tex]And we want to find log_2 A and we can do this :
[tex]\log _2A=\frac{1}{2}\log _2(3)+\frac{3}{4}\log _2(5)-3\log _2(7)[/tex]And the reason is because:
[tex]\log _2(\sqrt[4]{125})=\log _2(\sqrt[4]{25\cdot5})=\log _2(\sqrt[4]{5^3}))=\frac{3}{4}\log _2(5)[/tex]