Explanation
Step 1
select two points from the table
Let
P1(100,14) and P2(200, 20)
Step 2
find the slope using
[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2_{}-x_1}_{} \\ \text{where (x}_1,y_1)and(x_2,y_2\text{) are the coordinates of the knownpoitns} \end{gathered}[/tex]replace,
[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1}_{} \\ \text{slope}=\frac{20-14}{200-100}=\frac{6}{100}=\frac{3}{50}_{} \end{gathered}[/tex]
Step 3
use the slope-point equation, P1 and slope
[tex]\begin{gathered} y-y_0=slope(x-x_0) \\ y-14=\frac{3}{50}(x-100) \\ y=\frac{3x}{50}-\frac{300}{50}+14 \\ y=\frac{3x}{50}-6+14 \\ y=\frac{3x}{50}+8 \\ \end{gathered}[/tex]