6 jars = 1 box
12 box = 1 package
Let jars be "j", boxes be "b", and packages be "p". So, we can write:
[tex]\begin{gathered} 6j=1b \\ 12b=1p \end{gathered}[/tex]We need "j" in terms of "p", so we substitute however we can.
Putting first equation into 2nd, we get:
[tex]\begin{gathered} 6j=1b \\ b=6j \\ \text{Now, we have:} \\ 12b=p \\ \text{Substituting,} \\ 12(6j)=p \\ 72j=p \end{gathered}[/tex]This tells us that there are 72 jars is a whole package.
Re-arranging the equation to solve for j, we have:
[tex]\begin{gathered} 72j=p \\ j=\frac{p}{72} \\ j=\frac{1}{72}p \end{gathered}[/tex]Answer:
[tex]j=\frac{1}{72}p[/tex]