Please help meHow much of a circle is shaded write in simplest form as a fraction in simplest form

Explanation
Step 1
the shaded area is equal to
shaded area = total circle -not shaded area
a) the full circle equals 1 ( one unit)
b) let x represents the shaded area
c) the not shaded area is the sum of 2/5 and 1/3
Now , rewrite the expression
[tex]\begin{gathered} shadedarea=totalcircle-notshadedarea \\ \text{ shaded area=1-}(\frac{2}{5}+\frac{1}{3}) \\ so \\ x=1-(\frac{2}{5}+\frac{1}{3}) \end{gathered}[/tex]Step 2
Now, let's calculate
[tex]\begin{gathered} x=1-(\frac{2}{5}+\frac{1}{3}) \\ x=1-(\frac{2\cdot3+5\cdot1}{5\cdot3}) \\ x=1-(\frac{6+5}{15}) \\ x=1-(\frac{11}{15}) \end{gathered}[/tex]now, the subtraction
[tex]\begin{gathered} x=1-(\frac{11}{15}) \\ \text{tip: } \\ 1=\frac{15}{15},\text{ so} \\ x=\frac{15}{15}-(\frac{11}{15}) \\ x=\frac{15-11}{15} \\ x=\frac{4}{15} \end{gathered}[/tex]therefore, the answer is
[tex]\frac{4}{15}[/tex]I hope this helps you