Given:
The expression is,
[tex]\frac{(2x^2+9x-35)}{(x^2+10x+21)}\times\frac{(3x^2+2x-21)}{(3x^2+14x-49)}[/tex]
Simplify the expression,
[tex]\begin{gathered} \frac{(2x^2+9x-35)}{(x^2+10x+21)}\times\frac{(3x^2+2x-21)}{(3x^2+14x-49)} \\ =\frac{2x^2-5x+14x-35}{x^2+3x+7x+21}\times\frac{3x^2-7x+9x-21}{3x^2-7x+21x-49} \\ =\frac{x(2x^{}-5)+7(2x-5)}{x(x^{}+3)+7(x+3)}\times\frac{x(3x^{}-7)+3(3x-7)}{x(3x^{}-7)+7(3x-7)} \\ =\frac{(2x-5)(x+7)}{(x+3)(x+7)}\times\frac{(3x-7)(x+3)}{(3x-7)(x+7)} \\ \text{Cancel the common factor } \\ =\frac{2x-5}{x+3}\times\frac{x+3}{x+7} \\ =\frac{2x-5}{x+7} \end{gathered}[/tex]
Answer:
Numerator is 2x - 5.
Denominator is x + 7.