Drag the tiles to the boxes to form correct pairs.Consider functions fand g.(1) = 1 - 12g(x) = VII – 45Evaluate each combined function, and match it to the corresponding value.0VISV3 - 3-303(9.5) (2)(+) (2)(9 - 1)(-1)(-1)

Drag the tiles to the boxes to form correct pairsConsider functions fand g1 1 12gx VII 45Evaluate each combined function and match it to the corresponding value class=

Respuesta :

We have the following functions:

[tex]\begin{gathered} f(x)=1-x^2, \\ g(x)=\sqrt[]{11-4x}\text{.} \end{gathered}[/tex]

1) We evaluate (g · f)(2):

[tex](g\cdot f)(2)=g(2)\cdot f(2)=\sqrt[]{11-4\cdot2})\cdot(1-2^2)=-3\cdot\sqrt[]{3}\text{.}[/tex]

2) We evaluate (g + f)(2):

[tex](g+f)(2)=g(2)+f(2)=(\sqrt[]{11-4\cdot2})+(1-2^2)=\sqrt[]{3}-3.[/tex]

3) We evaluate (g - f)(-1):

[tex](g-f)(-1)=g(-1)-f(-1)=\sqrt[]{11-4\cdot(-1)}-(1-(-1)^2)=\sqrt[]{15}\text{.}[/tex]

4) We evaluate (f / g)(-1):

[tex](\frac{f}{g})(-1)=\frac{f(-1)}{g(-1)}=\frac{(1-(-1)^2)}{\sqrt[]{11-4\cdot(-1)}}=\frac{0}{4}=0.[/tex]

Answers

[tex]\begin{gathered} (g\cdot f)(2)=-3\cdot\sqrt[]{3} \\ (g+f)(2)=\sqrt[]{3}-3 \\ (g-f)(-1)=\sqrt[]{15} \\ (\frac{f}{g})(-1)=0 \end{gathered}[/tex]
ACCESS MORE
EDU ACCESS
Universidad de Mexico