Respuesta :

Given the standard equation of a circle

[tex](x-a)^2+(y-b)^2=r^2[/tex][tex]\text{Where a and b are the center of the circle}[/tex]

Given the equation

[tex]x^2+y^2+6x-14y-42=0[/tex]

Collect like terms and simplify in their complete form

[tex]\begin{gathered} x^2+6x+y^2-14y=42 \\ (x^2+6x)+(y^2-14y)=42 \\ (x+3)^2-9+(y-7)^2-49=42 \\ (x+3)^2+(y-7)^2=42+49+9 \\ (x+3)^2+(y-7)^2=100 \\ (x+3)^2+(y-7)^2=10^2 \end{gathered}[/tex]

Hence the standard form of the equation is

[tex](x+3)^2+(y-7)^2=10^2[/tex]

ACCESS MORE
EDU ACCESS