ANSWER
(-6, -7)
EXPLANATION
We have that the midpoint of A and B is M (-1, -5).
The midpoint, M, of two points A(x1, y1) and B(x2, y2) is given as:
[tex]M\text{ = (}\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})_{}[/tex]We are given that:
(x1, y1) = (4, -3)
We need to find (x2, y2).
[tex]\Rightarrow\text{ (-1, -5) = (}\frac{4+x_2}{2},\text{ }\frac{-3+y_2}{2})[/tex]Now, compare the x and y cordinates separately.
For x:
[tex]\begin{gathered} -1\text{ = }\frac{4+x_2}{2} \\ \Rightarrow\text{ -1 }\cdot2=4+x_2 \\ -2=4+x_2 \\ \Rightarrow x_2\text{ = -2 + -4} \\ x_2\text{ = -6} \end{gathered}[/tex]For y:
[tex]\begin{gathered} -5\text{ = }\frac{-3+y_2}{2} \\ \Rightarrow\text{ -5 }\cdot2=-3+y_2 \\ -10=-3+y_2 \\ y_2\text{ = -10 + 3} \\ y_2\text{ = -7} \end{gathered}[/tex]So, the cordinates of B are (-6, -7)