Given the function defined in the table below, find the average rate of change, insimplest form, of the function over the interval 6 < x < 15.f(x)017335653971128915107Thank

Respuesta :

To find the average rate of change in a interval

[tex]a\leq x\leq b[/tex]

We use the following formula:

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

Applying this to our interval

[tex]6\leq x\leq15[/tex]

We have the following rate of change:

[tex]\frac{f(15)-f(6)}{15-6}=\frac{107-53}{9}=\frac{54}{9}=6[/tex]

We have an average rate of change equals to 6.

RELAXING NOICE
Relax