Explanation
Step 1
find the difference
Let
[tex]\begin{gathered} a_1=29 \\ a_2=38 \\ a_3=47 \end{gathered}[/tex]so, the difference is
[tex]\begin{gathered} a_2-a_1=38-29=9 \\ a_3-a_2=47-38=9 \end{gathered}[/tex]so, the difference is 9, in other words you have to add 9 to the last number to get the new one
Step 2
find the rule
[tex]\begin{gathered} a_1=29 \\ a_2=29+9 \\ a_3=29+9+9 \\ \text{.} \\ \text{.} \\ a_n=29+9\cdot(n-1) \end{gathered}[/tex]Step 3
let
n=64
replace,
[tex]\begin{gathered} a_n=29+9\cdot(n-1) \\ a_{64}=29+9\cdot(64-1) \\ a_{64}=29+9(63) \\ a_{64}=29+567 \\ a_{64}=596 \end{gathered}[/tex]I hope this helps you