Notice that
[tex]\tan x\cos x\sin x[/tex]Is equal to
[tex]\begin{gathered} \tan x\cos x\sin x=\frac{\sin x}{\cos x}\cos x\sin x=\sin x\sin x=\sin ^2x \\ \Rightarrow\tan x\cos x\sin x=\sin ^2x \end{gathered}[/tex]And,
[tex]\cos ^2x+\sin ^2x=1[/tex]Thus,
[tex]\begin{gathered} \Rightarrow\sin ^2x=1-\cos ^2x \\ \Rightarrow\tan x\cos x\sin x=1-\cos ^2x \end{gathered}[/tex]However, notice that this identity requires that cosx is different than zero; otherwise, we would not be able to define tanx.