Respuesta :

This is the solution to a 2 degree equation:

[tex]x^2-21x+54=0[/tex]

The two numbers that multiply to 54 and add to -21 are the roots of this equation.

We can find the solution of an equation with this form:

[tex]ax^2+bx+c=0[/tex]

With this formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

For this problem, a = 1, b = -21 and c = 54:

[tex]x=\frac{21\pm\sqrt[]{(-21)^2-4\cdot1\cdot54}}{2\cdot1}=\frac{21\pm\sqrt[]{441-216}}{2}=\frac{21\pm\sqrt[]{225}}{2}=\frac{21\pm15}{2}[/tex]

The two numbers are:

[tex]\begin{gathered} x_1=\frac{21+15}{2}=\frac{36}{2}=18 \\ x_2=\frac{21-15}{2}=\frac{6}{2}=3 \end{gathered}[/tex]

The numbers are -18 and -3 (they must be negative so they add up to a negative number)

ACCESS MORE
EDU ACCESS
Universidad de Mexico