Given:
The line passing through the points (1,5) and (-5,2).
[tex]\begin{gathered} (x1,y1)=(1,5) \\ (x2,y2)=(-5,2) \end{gathered}[/tex]Required:
To find the equation of line, x- and y-intercepts.
Explanation:
The general form of line equation is
[tex]y-y1=m(x-x1)[/tex]Here
[tex]y-5=m(x-1)[/tex]Where m is the slope.
[tex]\begin{gathered} m=\frac{y2-y1}{x2-x1} \\ \\ =\frac{2-5}{-5-1} \\ \\ =\frac{-3}{-6} \\ \\ =\frac{1}{2} \end{gathered}[/tex]Therefore the equation of line is
[tex]\begin{gathered} y-5=\frac{1}{2}(x-1) \\ \\ y=\frac{1}{2}x-\frac{1}{2}+5 \\ \\ y=\frac{1}{2}x+\frac{9}{2} \end{gathered}[/tex]Here the x-intercept is
[tex]\begin{gathered} 0=\frac{1}{2}x+\frac{9}{2} \\ \\ \frac{1}{2}x+\frac{9}{2}=0 \\ \\ \frac{1}{2}x=-\frac{9}{2} \\ \\ x=-9 \end{gathered}[/tex]And the y-intercept is,
[tex]\begin{gathered} y=0+\frac{9}{2} \\ \\ y=\frac{9}{2} \end{gathered}[/tex]Final Answer:
The line equation is :
[tex]y=\frac{1}{2}x+\frac{9}{2}[/tex]The x-intercept is :( -9,0)
The y-intercept is : (0,9/2)