Given the system of equations:
x = 8y + 17 → (1)
x = 5y + 6 →(2)
by substitution by x from the first equation in the second equation
[tex]8y+17=5y+6[/tex]Solve the equation for y
Combine the like terms
[tex]\begin{gathered} 8y-5y=6-17 \\ 3y=-11 \\ \\ y=-\frac{11}{3} \end{gathered}[/tex]Substitute with y in the first equation to find x
[tex]\begin{gathered} x=8\cdot-\frac{11}{3}+17 \\ \\ x=-\frac{88}{3}+17=-12\frac{1}{3}=-\frac{37}{3} \end{gathered}[/tex]So, the solution of the system as order pair :
[tex]\begin{gathered} (x,y)=(-\frac{37}{3},-\frac{11}{3}) \\ \\ (x,y)=(-12\frac{1}{3},-3\frac{2}{3}) \end{gathered}[/tex]