Given:
The data 1, 4, 3, 1, 6.
Required:
Find standard deviation.
Explanation:
Formula to calculate standard deviation,
[tex]\begin{gathered} \sigma=\sqrt{\frac{\sum_{i\mathop{=}1}^N(x_i-\mu)^2}{N}} \\ Where, \\ \sigma(\text{ standard deviation}) \\ x_i(\text{ Values from dataset}) \\ \mu(Mean) \\ N(\text{ Total count of dataset}) \end{gathered}[/tex]
First the mean,
[tex]\begin{gathered} Mean(\mu)=\frac{1+4+3+1+6}{5} \\ \mu=\frac{15}{5} \\ \mu=3 \end{gathered}[/tex]
Now,
[tex]\begin{gathered} \sigma=\sqrt{\frac{(1-3)^2+(4-3)^2+(3-3)^2+(1-3)^2+(6-3)^2}{5}} \\ \sigma=\sqrt{\frac{18}{5}} \\ \sigma=\sqrt{3.6} \\ \sigma=1.90 \end{gathered}[/tex]
Answer:
Standard deviation equals 1.90