Respuesta :

Given

The expression,

[tex]\text{ log}(4)-\text{ log}(400,000)[/tex]

To find: The value.

Explanation:

It is given that,

[tex]\text{ log}(4)-\text{ log}(400,000)[/tex]

That implies,

Since

[tex]\text{ log}a-\text{ log}b=\text{ log}(\frac{a}{b})[/tex]

Then,

[tex]\begin{gathered} \text{ log}(4)-\text{ log}(400,000)=\text{ log}(\frac{4}{400,000}) \\ =\text{ log}(\frac{1}{100,000}) \\ =\text{ log}(\frac{1}{10^5}) \\ =\text{ log}(10^{-5}) \end{gathered}[/tex]

Since,

[tex]\text{ log}a^m=m\text{ log}a[/tex]

Then,

[tex]\begin{gathered} \text{ log}(4)-\text{ log}(400,000)=\text{ log}(10^{-5}) \\ =-5\text{ log}10 \\ =-5(1) \\ =-5 \end{gathered}[/tex]

Hence, the value is -5.

RELAXING NOICE
Relax