If RS = 102, ST = 96, RT = 80, VW = 24, and UW = 20, find theperimeter of AUVW. Round your answer to the nearest tenth if necessary.Figures are not necessarily drawn to scale.solVwgetR

If RS 102 ST 96 RT 80 VW 24 and UW 20 find theperimeter of AUVW Round your answer to the nearest tenth if necessaryFigures are not necessarily drawn to scalesol class=

Respuesta :

Two triangles are similar if the ratios of the corresponding sides are equal.

If ΔRST is similar to ΔUVW, we have that:

[tex]\frac{RS}{UV}=\frac{ST}{VW}=\frac{RT}{UW}[/tex]

We are given the following parameters:

[tex]\begin{gathered} RS=102 \\ ST=96 \\ RT=80 \\ VW=24 \\ UW=20 \end{gathered}[/tex]

Thus, we have that:

[tex]\frac{102}{UV}=\frac{96}{24}=\frac{80}{20}[/tex]

Comparing the first two ratios, we have:

[tex]\begin{gathered} \frac{102}{UV}=\frac{96}{24} \\ \frac{102}{UV}=4 \\ UV=\frac{102}{4} \\ UV=25.5 \end{gathered}[/tex]

Hence, the perimeter of ΔUVW is calculated to be:

[tex]P=UV+VW+UW=25.5+24+20=69.5[/tex]

The perimeter is 69.5.

ACCESS MORE
EDU ACCESS
Universidad de Mexico