Respuesta :

Given:

[tex]y=\text{log}_2x[/tex]

Recall that

[tex]\text{If }y=\log _bx\text{ then }b^y=x\text{. Here b=2.}[/tex][tex]2^y=x[/tex]

1. Substitute x=8 in the equation.

[tex]2^y=8[/tex]

[tex]2^y=2^3[/tex][tex]y=3[/tex]

The answer for 8 is 3.

2.

Substitute x=4 in the equaiton.

[tex]2^y=4[/tex]

[tex]2^y=2^2[/tex][tex]y=2[/tex]

The answer for 4 is 2.

3.

Substitute x=2 in the equaiton.

[tex]2^y=2[/tex][tex]y=1[/tex]

The answer for 2 is 1.

4.

Substitute x=1 in the equaiton.

[tex]2^y=1[/tex]

[tex]2^y=2^0[/tex][tex]y=0[/tex]

The answer for 1 is 0.

5.

Substitute x=1/2 in the equaiton.

[tex]2^y=\frac{1}{2}[/tex]

[tex]2^y=\frac{1}{2}[/tex]

RELAXING NOICE
Relax