Respuesta :

Given:

[tex]F(x)=\frac{x^{2}-11x-12}{x+6}[/tex]

To find:

The horizontal asymptote or slant asymptote.

Explanation:

Dividing the polynomial we get,

[tex]F(x)=x-17+\frac{90}{x+6}[/tex]

If x approaches infinity, then the above rational term becomes zero.

So, we will get

[tex]y=x-17[/tex]

As we know,

An oblique (or slant) asymptote is a slant line that the function approaches as x approaches plus or minus infinity.

Therefore, the oblique asymptote is,

[tex]y=x-17[/tex]

Final answer:

The oblique asymptote is,

[tex]y=x-17[/tex]

RELAXING NOICE
Relax