Respuesta :

given the function

[tex]V=25000*1.5^{-0.2t}[/tex]

A) the value when Shiyun bought the car (t=0)

[tex]V(0)=25000*1.5^0[/tex][tex]V(0)=25000*1[/tex][tex]V(0)=25000[/tex]

the value when Shiyun bought the car was 25000 USD

b) calculate the Value of the car 3 years after Shiyun bought it (t=3)

[tex]V(3)=25000*1.5^{-0.2(3)}[/tex][tex]V(3)=25000*\frac{1}{1.5^{0.6}}[/tex][tex]V(3)=\frac{25000}{1.2754}=19601.317[/tex]

then the Value of the car 3 years after Shiyun bought it was 19601.32 USD

c)calculate time when V is half the value when Shiyun bought it

since the started value is 25000

half of that value is 12500

then

[tex]V=12500=25000*1.5^{-0.2t}[/tex]

Solving for t

[tex]\frac{12500}{25000}=1.5^{-0.2t}[/tex][tex]ln(\frac{12500}{25000})=ln(1.5^{-0.2t})[/tex][tex]ln(\frac{1}{2})=-0.2tln(1.5^)[/tex][tex]\frac{ln(\frac{1}{2})}{-0.2ln(1.5)}=t[/tex][tex]8.5475=t[/tex]

then t when v=12500 is

t=8.55

ACCESS MORE
EDU ACCESS