Respuesta :

Answer:

17

Explanation

Given the functions

[tex]\begin{gathered} f(x)=4x+1\text{ } \\ g(x)\text{ = }-2x \end{gathered}[/tex]

Required

f(g(-2))

First we need to get f(g(x));

[tex]\begin{gathered} f(g(x))\text{ = f(-2x)} \\ f(-2x)\text{ = 4(-2x) +1} \\ f(-2x)\text{ = -8x + 1} \\ f(g(x))\text{ = -8x+1} \end{gathered}[/tex]

Next is to substitute x= -2 into the resulting function;

[tex]\begin{gathered} f(g(-2))=-8(-2)\text{ +1} \\ f(g(-2))\text{ = 16 + 1} \\ f(g(-2))\text{ =17} \end{gathered}[/tex]

Hence the value of f(g(-2)) is 17

RELAXING NOICE
Relax