Respuesta :

[tex]\rm \vec u=\ \textless \ 7,2\ \textgreater \ \qquad\qquad\qquad v=\ \textless \ 0,-4\ \textgreater \ [/tex]

Recall that the cosine of the angle between the vectors is given by,
[tex]\rm \cos\theta=\dfrac{\vec u\cdot\vec v}{|u||v|}[/tex]

So we have a bunch of things we need to do.

Find the dot product of u and v,
[tex]\rm \vec u\cdot \vec v=\ \textless \ 7,2\ \textgreater \ \cdot\ \textless \ 0,-4\ \textgreater \ =7(0)+2(-4)=-8[/tex]

That gives us our numerator,
[tex]\rm \cos\theta=\dfrac{-8}{|u||v|}[/tex]

Find the magnitude of each vector,
[tex]\rm |u|=\sqrt{7^2+2^2}=\sqrt{53}\qquad\qquad |v|=\sqrt{0^2+(-4)^2}=4[/tex]

Ok that gives us our denominator,
[tex]\rm \cos\theta=\dfrac{-8}{4\sqrt{53}}[/tex]

To find your angle theta, apply inverse cosine,
[tex]\rm \cos^{-1}\left(\dfrac{-8}{4\sqrt{53}}\right)=\theta[/tex]

Let your calculator do the rest.
Hope that helps!
ACCESS MORE