Given the word problem, we can deduce the following information:
1. We use a 95% degree of confidence.
2. n=2000, x=300
To find the Margin of Error, we use the formula:
[tex]ME=z\cdot\sqrt[]{\frac{p(1-p)}{n}}[/tex]where:
ME= Margin of Error
p=sample proportion
n=sample size
z=z-value
We can get the sample proportion, p by using the formula:
[tex]p=\frac{x}{n}[/tex]where:
x=number of successes
So,
[tex]\begin{gathered} p=\frac{300}{2000} \\ \text{Calculate} \\ p=0.15 \end{gathered}[/tex]Since the degree of confidence is 95%, the z-value is 1.96 or z=1.96.
Next, we plug in z=1.96, p=0.15, and n=2000 into the Margin of Error formula:
[tex]\begin{gathered} ME=z\cdot\sqrt[]{\frac{p(1-p)}{n}} \\ =(1.96)(\sqrt[]{\frac{0.15(1-0.15)}{2000}} \\ \text{Calculate} \\ ME=0.0156 \end{gathered}[/tex]Therefore, the Margin of Error is 0.0156.