The function is given as,
[tex]y=x^2+x+2[/tex]The interval is given as,
[tex]\lbrack1,4\rbrack[/tex]Consider that the average rate of change of a function f(x), in the interval [a,b] is given by,
[tex]r=\frac{f(b)-f(a)}{b-a}[/tex]According to the given problem,
[tex]\begin{gathered} f(x)=x^2+x+2 \\ a=1 \\ b=4 \end{gathered}[/tex]The value of the function at the end-points is calculated as,
[tex]\begin{gathered} f(b)=f(4)=4^2+4+2=16+6=22 \\ f(a)=f(1)=1^2+1+2=1+3=4 \end{gathered}[/tex]Substitute the values and simplify,
[tex]\begin{gathered} r=\frac{22-4}{4-1} \\ r=\frac{18}{3} \\ r=6 \end{gathered}[/tex]Thus, the average rate of change of the function is 6 units.