Respuesta :

Given:

z varies inversely as w²

so, we can write the following formula:

[tex]z\propto\frac{1}{w^2}\rightarrow z=\frac{k}{w^2}[/tex]

Where (k) is the constant of proportionality

We will find the value of (k) using the given data:

when z = 20, w = 2

so,

[tex]\begin{gathered} 20=\frac{k}{2^2} \\ \\ k=20\cdot2^2=20\cdot4=80 \end{gathered}[/tex]

So, the equation will be as follows:

[tex]z=\frac{80}{w^2}[/tex]

We will find the value of (z) when w = 3

so, substitute with w = 3

[tex]\begin{gathered} z=\frac{80}{3^2} \\ \\ z=\frac{80}{9} \end{gathered}[/tex]

So, the answer will be z = 80/9

RELAXING NOICE
Relax