Given:
z varies inversely as w²
so, we can write the following formula:
[tex]z\propto\frac{1}{w^2}\rightarrow z=\frac{k}{w^2}[/tex]Where (k) is the constant of proportionality
We will find the value of (k) using the given data:
when z = 20, w = 2
so,
[tex]\begin{gathered} 20=\frac{k}{2^2} \\ \\ k=20\cdot2^2=20\cdot4=80 \end{gathered}[/tex]So, the equation will be as follows:
[tex]z=\frac{80}{w^2}[/tex]We will find the value of (z) when w = 3
so, substitute with w = 3
[tex]\begin{gathered} z=\frac{80}{3^2} \\ \\ z=\frac{80}{9} \end{gathered}[/tex]So, the answer will be z = 80/9