Given the following:
[tex]\begin{gathered} \alpha=0.05 \\ p=0.74 \\ \mu=300 \end{gathered}[/tex]a)
[tex]\begin{gathered} H_0\colon P=0.1 \\ H_1\colon P<0.1 \end{gathered}[/tex][tex]\begin{gathered} z=\frac{\hat{P}-P}{\sqrt[]{\frac{P(1-P)}{\mu}}} \\ \\ =\frac{0.09-0.1}{\sqrt[]{\frac{0.1\mleft(0.9\mright)}{300}}}=-0.58 \end{gathered}[/tex]b) The critical value is -1.645
Also
[tex]\begin{gathered} p<-0.58 \\ =0.28 \end{gathered}[/tex]c) Conclusion:
We fail to reject the test, since there is no enough evidence to conclude that the proportion of wrong tests is less than 10%