Respuesta :

As per given by the question,

There are given that a triangle, triangle VWX.

Now,

There are also given that the angles of triangle,

[tex]\begin{gathered} m\angle V=(6x-4)^{\circ} \\ m\angle W=(x+12)^{\circ} \\ m\angle X=(3x+2)^{\circ} \end{gathered}[/tex]

Then,

According to the properties of the triangle;

The total sum of the angles are equal to 180 degree.

So,

From the given angles of the triangle VWX,

[tex]m\angle V+m\angle W+m\angle X=180^{\circ}[/tex]

Put the value of all angles into above properties.

Then,

[tex]\begin{gathered} m\angle V+m\angle W+m\angle X=180^{\circ} \\ (6x-4)^{\circ}+(x+12)^{\circ}+(3x+2)^{\circ}=180^{\circ} \end{gathered}[/tex]

Solve the above equation to get the value of x,

[tex]\begin{gathered} (6x-4)^{\circ}+(x+12)^{\circ}+(3x+2)^{\circ}=180^{\circ} \\ 6x-4+x+12+3x+2=180 \\ 10x+10=180 \\ 10x=180-10 \\ 10x=170 \\ x=17 \end{gathered}[/tex]

Now,

If value of x is 17, then find the measure of angle W,

So,

Put the value of x into the angle W,

Then,

[tex]\begin{gathered} m\angle W=(x+12)^{\circ} \\ m\angle W=(17+12)^{\circ} \\ m\angle W=29^{\circ} \end{gathered}[/tex]

Hence, the value of measure angle W is 29 degree.

RELAXING NOICE
Relax