In AVWX, m_V = (6x – 4)', m_W = (a + 12), and m_X = (3x + 2)°.Find m_W.

As per given by the question,
There are given that a triangle, triangle VWX.
Now,
There are also given that the angles of triangle,
[tex]\begin{gathered} m\angle V=(6x-4)^{\circ} \\ m\angle W=(x+12)^{\circ} \\ m\angle X=(3x+2)^{\circ} \end{gathered}[/tex]Then,
According to the properties of the triangle;
The total sum of the angles are equal to 180 degree.
So,
From the given angles of the triangle VWX,
[tex]m\angle V+m\angle W+m\angle X=180^{\circ}[/tex]Put the value of all angles into above properties.
Then,
[tex]\begin{gathered} m\angle V+m\angle W+m\angle X=180^{\circ} \\ (6x-4)^{\circ}+(x+12)^{\circ}+(3x+2)^{\circ}=180^{\circ} \end{gathered}[/tex]Solve the above equation to get the value of x,
[tex]\begin{gathered} (6x-4)^{\circ}+(x+12)^{\circ}+(3x+2)^{\circ}=180^{\circ} \\ 6x-4+x+12+3x+2=180 \\ 10x+10=180 \\ 10x=180-10 \\ 10x=170 \\ x=17 \end{gathered}[/tex]Now,
If value of x is 17, then find the measure of angle W,
So,
Put the value of x into the angle W,
Then,
[tex]\begin{gathered} m\angle W=(x+12)^{\circ} \\ m\angle W=(17+12)^{\circ} \\ m\angle W=29^{\circ} \end{gathered}[/tex]Hence, the value of measure angle W is 29 degree.