Respuesta :

Answer:

(-9,0)

Explanation:

The midpoint of a line segment is the point that divides the line into two equal parts.

Given the points C(-13,-9) and D(-5,9), we find the midpoint of CD below:

[tex]\begin{gathered} M(x,y)=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}) \\ $\mleft(x_1,y_1\mright)=C\mleft(-13,-9\mright)$ \\ (x_2,y_2)=D\mleft(-5,9\mright) \end{gathered}[/tex]

Substitution of the points C and D into the midpoint formula above gives:

[tex]\begin{gathered} M(x,y)=(\dfrac{-13+(-5)_{}}{2},\dfrac{-9+9_{}}{2}) \\ =(\dfrac{-18_{}}{2},\dfrac{0_{}}{2}) \\ =(-9,0) \end{gathered}[/tex]

The midpoint of the line segment joining points C and D is (-9,0).

ACCESS MORE
EDU ACCESS
Universidad de Mexico