The perimeter of a rectangle is given by the formula
P=2(L+W)
In this problem
[tex]L\ge5W+4\text{ ----> inequality 1}[/tex][tex]P\ge32[/tex]substitute given values
[tex]2(L+W)\ge32[/tex]Solve for L
[tex]\begin{gathered} L+W\ge\frac{32}{2} \\ \\ L+W\ge16 \\ L\ge16-W\text{ ---->inequality 2} \end{gathered}[/tex]Equate both inequalities
[tex]\begin{gathered} 5W+4=16-W \\ 5W+W=16-4 \\ 6W=12 \\ W=2 \end{gathered}[/tex]Substitute the value of W in the inequality 1 or inequality 2
[tex]\begin{gathered} L\ge5W+4 \\ L\geqslant5(2)+4 \\ L\geqslant14 \end{gathered}[/tex]therefore