Answer:
The solution to the equation is;
[tex]\begin{gathered} t=-2 \\ r=0 \end{gathered}[/tex]Explanation:
Given the system of equation:
[tex]\begin{gathered} 6r-3t=6------1 \\ 8t=-6r-16 \\ 8t+6r=-16------2 \end{gathered}[/tex]Solving by elimination:
Let us subtract equation 1 from equation 2;
[tex]\begin{gathered} 8t+6r-6r-(-3t)=-16-6 \\ 8t+3t=-22 \\ 11t=-22 \\ t=\frac{-22}{11} \\ t=-2 \end{gathered}[/tex]since t = -2, we can use equation 1 to solve for r;
[tex]\begin{gathered} 6r-3t=6 \\ 6r-3(-2)=6 \\ 6r+6=6 \\ 6r=6-6 \\ 6r=0 \\ r=0 \end{gathered}[/tex]Therefore, the solution to the equation is;
[tex]\begin{gathered} t=-2 \\ r=0 \end{gathered}[/tex]