10) find x using Cramer's rule:x - 2y + 3z = 72x + y + z = 43x + 2y - 2z = - 10

Hello!
First, let's rewrite the system as a matrix:
[tex]\begin{bmatrix}{1} & {-2} & {3} & {7} \\ {2} & {1} & {1} & {4} \\ {-3} & {2} & {-2} & {-10} \\ x & y & z & result{}\end{bmatrix}[/tex]Let me explain:
• 1st, column: coefficients from x
,• 2nd, column: coefficients from y
,• 3rd ,column: coefficients from z
,• 4th, column: results
Now, we must calculate the determinant of the matrix 3x3 of the values of x, y, z, look:
To calculate the determinant of a matrix, we will multiply all values of the main diagonal and subtract the secondary diagonal from it.
Let me explain in more detail in a drawing:
[tex]\begin{gathered} Det=Main-(Secundary) \\ Det=16-(1) \\ Det=16-1 \\ Det=15 \end{gathered}[/tex][tex]D=\begin{bmatrix}{1} & {-2} & {3} \\ {2} & {1} & {1} \\ {-3} & {2} & {-2}\end{bmatrix}=15[/tex]Now, let's calculate three more determinants. This time, we will remove the column of the variable that we are working with and replace it with the column of the results, look:
[tex]\begin{gathered} D_X=\begin{bmatrix}{7} & {-2} & {3} \\ {4} & {1} & {1} \\ {-10} & {2} & {-2}\end{bmatrix}=30 \\ \\ D_Y=\begin{bmatrix}{1} & 7 & {3} \\ 2 & 4 & {1} \\ -3 & -10 & {-2}\end{bmatrix}=-15 \\ \\ D_Z=\begin{bmatrix}{1} & {-2} & {7} \\ {2} & {1} & {4} \\ {-3} & {2} & {-10}\end{bmatrix}=15 \end{gathered}[/tex]To calculate the values of x, y and z, we have to divide the determinant of the variable by the determinant of the initial matrix, look:
[tex]\begin{gathered} x=\frac{D_X}{D}=\frac{30}{15}=2 \\ \\ \\ y=\frac{D_Y}{D}=\frac{-15}{15}=-1 \\ \\ \\ z=\frac{D_Z}{D}=\frac{15}{15}=1 \end{gathered}[/tex](x, y, z) = (2, -1, 1)
X = 2
Y = -1
Z = 1