Use the function f and the given real number a to find (f -1)'(a). (Hint: See Example 5. If an answer does not exist, enter DNE.)f(x) = cos(3x), 0 ≤ x ≤ /3, a = 1

Given:
[tex]f(x)=\cos(3x),0\leq x\leq\frac{\pi}{3},a=1[/tex]Required: Derivative of inverse of x at the point x = 1
Explanation:
Use the formula
[tex](f^{-1})^{\prime}(x)=\frac{1}{f^{\prime}(f^{-1}(x))}[/tex]Substitute 1 for x.
[tex](f^{-1})^{\prime}(1)=\frac{1}{f^{\prime}(f^{-1}(1))}\text{ ...\lparen1\rparen}[/tex]First, find the inverse of f(x).
Let y = f(x). Then y = cos(3x).
Exchange x and y gives x = cos(3y).
Solve for y, which will be the inverse of f(x).
[tex]\begin{gathered} 3y=\cos^{-1}x \\ y=\frac{1}{3}\cos^{-1}x \end{gathered}[/tex]So,
[tex]f^{-1}(x)=\frac{1}{3}\cos^{-1}(x)[/tex]Substitute 1 for x.
[tex]\begin{gathered} f^{-1}(1)=\frac{1}{3}\cos^{-1}(1) \\ =0 \end{gathered}[/tex]Now, find the derivative of f(x).
[tex]f^{\prime}(x)=-3\sin(3x)[/tex]Thus, from equation (1),
[tex]\begin{gathered} (f^{-1})^{\prime}(1)=\frac{1}{f^{\prime}(f^{-1}(1))}\text{ ...\lparen1\rparen} \\ =\frac{1}{f^{\prime}(0)} \\ =\frac{1}{-3\sin(0)} \end{gathered}[/tex]which is not defined. So, the answer not exists.