Step 1
Nathaniel
Start time = t
Speed = 48
[tex]\text{Distance = 48t}[/tex]Step 2
Mikaela
[tex]\begin{gathered} \text{Start time = t - 0.5} \\ \text{Speed = 72} \\ \text{Distance = 72(t - 0.5)} \end{gathered}[/tex]Step 3
Equate the two distance
[tex]\begin{gathered} 48t\text{ = 72(t - 0.5)} \\ 48t\text{ = 72t - 36} \\ 36\text{ = 72t - 48 t} \\ \text{36 = 24t} \\ \text{t = }\frac{36}{24} \\ \text{t = }\frac{3}{2}\text{ = 1}\frac{1}{2}\text{ hours} \end{gathered}[/tex]Final answer
[tex]It\text{ take( 1}\frac{1}{2}-\frac{1}{2})=1\text{ hours to catch up}[/tex]Answer: 1 hour