What is the range of the function f(x) = |x – 3| + 4?A. R: {f(x) ∈ ℝ | f(x) ≥ 4}B. R: {f(x) ∈ ℝ | f(x) ≤ 4}C. R: {f(x) ∈ ℝ | f(x) > 7}D. R: {f(x) ∈ ℝ | f(x) < 7}

A. R: {f(x) ∈ ℝ | f(x) ≥ 4}
ExplanationAn absolute value function is a function that contains an algebraic expression within absolute value symbol,the absolute value of a number is its distance from 0 on the number line so as a distance it is always positive
[tex]\lvert{x}\rvert=\begin{cases}x\text{ if x }\ge0 \\ -x\text{ if x}<0\end{cases}[/tex]also, the range of a function refers to the entire set of all possible output values of the dependent variable.
hence ,let's check the outputs for this absolute value function
Step 1
given
[tex]f(x)=\lvert{x-3}\rvert+4[/tex]a)Since we have absolute signs, we must get only positive values by applying any positive and negative values for x in the given function. So, the range of absolute value is
[tex]\begin{gathered} x-3+4,\text{ if x-3}\ge0 \\ and \\ -(x-3)\text{ i f x-3}<0 \end{gathered}[/tex]let's solve the inequalities
[tex]\begin{gathered} x\ge3 \\ -x+3<0 \\ \cap \\ -x<-3 \\ x>3 \\ \end{gathered}[/tex]so, the value in the absolute value sign will be alwasys greater or equa
than 0 ( we have to add the 4 )
so
[tex]\begin{gathered} f(x)=(\text{ greater tahn 0\rparen+4} \\ \\ it\text{ means the function will be always greater or equal than 4} \end{gathered}[/tex]so, the range of the function is all the numbers greater or equal than 4,
therefore, in set notation the answer is
A. R: {f(x) ∈ ℝ | f(x) ≥ 4}
I hope this helps you