Explanation
Step 1:
Given data
[tex]\theta\text{ = 45}[/tex]Step 2:
Write the equations relating polar to rectangular coordinates are
[tex]\theta\text{= arc}\tan (\frac{y}{x})\text{ or }\tan (\theta)\text{ = }\frac{y}{x}\text{ and r = }\sqrt[]{x^2+y^2}[/tex]Since your polar equation has no "r" we will not need the last equation.
Step 3:
[tex]\text{Substitute the value of }\theta\text{ = 45}[/tex]Therefore
[tex]\begin{gathered} \tan 45\text{ = }\frac{y}{x} \\ \tan \text{ 45 = 1} \\ 1\text{ = }\frac{y}{x} \\ \text{Cross multiply} \\ y\text{ = x} \end{gathered}[/tex]Final answer
y = x