Find the common ratio and the number of terms in the given finite geometric sequence.a_n={2,1, \frac{1}{2} ,..., \frac{1}{1024} }The common ratio is AnswerThere are Answer terms.

Find the common ratio and the number of terms in the given finite geometric sequencean21 frac12 frac11024 The common ratio is AnswerThere are Answer terms class=

Respuesta :

Notice that:

[tex]\begin{gathered} 1=2*\frac{1}{2}, \\ \frac{1}{2}=1*\frac{1}{2}. \end{gathered}[/tex]

Therefore, the common ratio is:

[tex]\frac{1}{2}.[/tex]

The mth term of the sequence has the general form:

[tex]a_m=2(\frac{1}{2})^{m-1}.^[/tex]

Setting

[tex]a_m=\frac{1}{1024},[/tex]

we get:

[tex]\frac{1}{1024}=2(\frac{1}{2})^{m-1}.[/tex]

Solving the above equation for m, we get:

[tex]\begin{gathered} \frac{1}{2*1024}=\frac{1}{2^{m-1}}, \\ 2048=2^{m-1}, \\ log_2(2048)=m-1(log_22), \\ 11=m-1, \\ m=11+1, \\ m=12. \end{gathered}[/tex]

Finally, we get that there are

[tex]12[/tex]

terms in the finite geometric sequence.

Answer:

First blank:

[tex]\frac{1}{2},[/tex]

Second blank:

[tex]12.[/tex]

ACCESS MORE
EDU ACCESS