Find the common ratio and the number of terms in the given finite geometric sequence.a_n={2,1, \frac{1}{2} ,..., \frac{1}{1024} }The common ratio is AnswerThere are Answer terms.

Notice that:
[tex]\begin{gathered} 1=2*\frac{1}{2}, \\ \frac{1}{2}=1*\frac{1}{2}. \end{gathered}[/tex]Therefore, the common ratio is:
[tex]\frac{1}{2}.[/tex]The mth term of the sequence has the general form:
[tex]a_m=2(\frac{1}{2})^{m-1}.^[/tex]Setting
[tex]a_m=\frac{1}{1024},[/tex]we get:
[tex]\frac{1}{1024}=2(\frac{1}{2})^{m-1}.[/tex]Solving the above equation for m, we get:
[tex]\begin{gathered} \frac{1}{2*1024}=\frac{1}{2^{m-1}}, \\ 2048=2^{m-1}, \\ log_2(2048)=m-1(log_22), \\ 11=m-1, \\ m=11+1, \\ m=12. \end{gathered}[/tex]Finally, we get that there are
[tex]12[/tex]terms in the finite geometric sequence.
Answer:
First blank:
[tex]\frac{1}{2},[/tex]Second blank:
[tex]12.[/tex]