Use the approximation that g ≈ 10 m/s2 to fill in the blanks in the following diagram. Ftension (force of tension) = ___________ N asystem (acceleration of the system) = ___________ m/s/s ΣFsystem (net force of the system) = ___________ N

We are asked to determine the tension in the system. To do that we will add the vertical forces on the 50g mass using the following free-body diagram:
Where:
[tex]\begin{gathered} T=\text{ tension} \\ m=50g\text{ mass} \\ g=\text{ acceleration of gravity} \end{gathered}[/tex]Adding the vertical forces we get (taking downward forces to be positive and upward negative):
[tex]mg-T=ma[/tex]Where "a" is the acceleration of the system.
If we divide by mass "m" we get:
[tex]\frac{mg-T}{m}=a[/tex]Now, we add the horizontal forces for the 250g mass using the following free-body diagram:
Where:
[tex]\begin{gathered} T=\text{ tension} \\ M=250g\text{ mass} \\ F_f=\text{ friction force} \\ N=\text{ normal force} \end{gathered}[/tex]Now, we add the horizontal forces we get:
[tex]T-F_f=Ma[/tex]The friction force is given by:
[tex]F_f=\mu N[/tex]Since the object is not accelerating in the vertical direction this means that the normal force is equivalent to the weight of the 250g mass, therefore, we have:
[tex]F_f=\mu Mg[/tex]Substituting in the sum of forces we get:
[tex]T-\mu Mg=Ma[/tex]Now, we divide both sides by the mass "M":
[tex]\frac{T-\mu Mg}{M}=a[/tex]Since the acceleration is the same for both masses we can set them equal together and we get:
[tex]\frac{mg-T}{m}=\frac{T-\mu Mg}{M}[/tex]Now, we solve for the tension "T". First, we distribute both denominators:
[tex]g-\frac{T}{m}=\frac{T}{M}-\mu g[/tex]Now, we add T/m:
[tex]g=\frac{T}{M}+\frac{T}{m}-\mu g[/tex]Now, we add the coefficient of friction and the gravity to both sides:
[tex]g+\mu g=\frac{T}{M}+\frac{T}{m}[/tex]Now, we take "T" as a common factor:
[tex]g+\mu g=T(\frac{1}{M}+\frac{1}{m})[/tex]Now, we divide both sides by the factor:
[tex]\frac{g+\mu g}{\frac{1}{M}+\frac{1}{m}}=T[/tex]Now, we substitute the values:
[tex]\frac{9.8\frac{m}{s^2}+0.1(9.8\frac{m}{s^2})}{\frac{1}{0.25kg}+\frac{1}{0.05kg}}=T[/tex]Solving the operations:
[tex]0.45N=T[/tex]Therefore, the force of tension is 0.45 N.
Now, we determine the acceleration by substituting the value of the force of tension in any of the two formulas for acceleration:
[tex]a=\frac{mg-T}{m}[/tex]Substituting the values:
[tex]a=\frac{(0.05kg)(9.8\frac{m}{s^2})-0.45N}{0.05kg}[/tex]Solving the operations:
[tex]a=0.8\frac{m}{s^2}[/tex]Therefore, the acceleration is 0.8 m/s/s.
The net force on the system is given by Newton's second law:
[tex]\Sigma F_{net}=(M+m)a[/tex]Where "M + m" is the total mass of the system and "a" is the acceleration of the system. Substituting the values we get:
[tex]\Sigma F_{net}=(0.25kg+0.05kg)(0.8\frac{m}{s^2})[/tex]Solving the operations:
[tex]\Sigma F_{net}=0.24N[/tex]Therefore, the net force is 0.24 N.