Respuesta :

Given:

[tex]\begin{gathered} \angle DEH=13x \\ \angle FEH=10x+21 \end{gathered}[/tex]

To find the value of x:

Since, the angles DEH and FEH are the complementary angles.

So,

[tex]\begin{gathered} \angle DEH+\angle FEH=90^{\circ} \\ 13x+10x+21=90^{\circ} \\ 23x+21=90^{\circ} \\ 23x=90^{\circ}-21^{\circ} \\ 23x=69 \\ x=\frac{69}{23} \\ x=3 \end{gathered}[/tex]

Hence, the value of x is 3.

Thus, the angles

[tex]\begin{gathered} \angle DEH=13x \\ =13(3) \\ =39^{\circ} \end{gathered}[/tex]

And

[tex]\begin{gathered} \angle FEH=10x+21 \\ =10(3)+21 \\ =30+21 \\ =51^{\circ} \end{gathered}[/tex]

Hence,

[tex]undefined[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico