To solve x:
1- Remove parentheses by using distributive property:
[tex]3y+5x+15+2=2y+7[/tex]2-Combine like terms;
[tex]3y+5x+17=2y+7[/tex]3-Leave x in one side of the equal sing:
- Subtract 3y in both sides of the equation
[tex]\begin{gathered} 3y-3y+5x+17=2y-3y+7 \\ 5x+17=-y+7 \end{gathered}[/tex]-Subtract 17 in both sides of the equation:
[tex]\begin{gathered} 5x+17-17=-y+7-17 \\ 5x=-y-10 \end{gathered}[/tex]-Divide both sides of the equation into 5:
[tex]\begin{gathered} \frac{5}{5}x=-\frac{y}{5}-\frac{10}{5} \\ \\ x=-\frac{y}{5}-2 \end{gathered}[/tex]Then, the solution for x in the given equation is:[tex]x=-\frac{y}{5}-2[/tex]