We have this system of equations
[tex]\begin{gathered} 6x+4y=16.70\ldots(1) \\ 3x+4y=10.85\ldots(2) \end{gathered}[/tex]First we will multiply the second equation by -1, so we obtain
[tex]-3x-4y=-10.85[/tex]then we sum the first equation with the equation above
[tex]\begin{gathered} 3x=5.85 \\ \end{gathered}[/tex]then we clear x
[tex]x=\frac{5.85}{3}=1.95[/tex]then we substitute the value of x in the first equation
[tex]\begin{gathered} 6(1.95)+4y=16.70 \\ 11.7+4y=16.70 \end{gathered}[/tex]then we clear y
[tex]\begin{gathered} 4y=5 \\ y=\frac{5}{4} \\ y=1.25 \end{gathered}[/tex]the solution of the system of equations is
x=1.95
y=1.25