Which of the following expresses the coordinates of the foci of the conic section shown below?(x + 2)² /49+ (y − 1)²/25 = 1

Given the conic section:
[tex]\frac{(x+2)^2}{49}+\frac{(y-1)^2}{25}=1[/tex]You can identify that it has this form:
[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]That is the form of the Equation of an Ellipse.
By definition, the coordinates of the foci of an ellipse are:
[tex](h\pm c,k)[/tex]Where:
[tex]c=\sqrt{a^2-b^2}[/tex]In this case, you can identify that:
[tex]\begin{gathered} a^2=49 \\ b^2=25 \end{gathered}[/tex]Therefore, you can find "c":
[tex]c=\sqrt{49-25}=2\sqrt{6}[/tex]Notice that, in this case:
[tex]\begin{gathered} h=-2 \\ k=1 \end{gathered}[/tex]Therefore, the coordinates of the Foci are:
[tex](-2\pm2\sqrt{6},1)[/tex]Hence, the answer is: Option B.