Respuesta :

Given the conic section:

[tex]\frac{(x+2)^2}{49}+\frac{(y-1)^2}{25}=1[/tex]

You can identify that it has this form:

[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]

That is the form of the Equation of an Ellipse.

By definition, the coordinates of the foci of an ellipse are:

[tex](h\pm c,k)[/tex]

Where:

[tex]c=\sqrt{a^2-b^2}[/tex]

In this case, you can identify that:

[tex]\begin{gathered} a^2=49 \\ b^2=25 \end{gathered}[/tex]

Therefore, you can find "c":

[tex]c=\sqrt{49-25}=2\sqrt{6}[/tex]

Notice that, in this case:

[tex]\begin{gathered} h=-2 \\ k=1 \end{gathered}[/tex]

Therefore, the coordinates of the Foci are:

[tex](-2\pm2\sqrt{6},1)[/tex]

Hence, the answer is: Option B.

ACCESS MORE
EDU ACCESS