Step 1: Problem
Normal distribution
Step 2: Concept
[tex]\begin{gathered} z\text{ = }\frac{x\text{ - }\mu}{\sigma} \\ \mu\text{ = mean} \\ \sigma\text{ = standard deviation} \end{gathered}[/tex]Step 3: Method
A) Pr(10 <= x <= 25)
[tex]\begin{gathered} \mu\text{ = 20} \\ \sigma\text{ = 5} \\ z1\text{ = }\frac{x\text{ - }\mu}{\sigma}\text{ = }\frac{10\text{ - 20}}{5}\text{ = }\frac{-10}{5}\text{ = -2 z value of -2 from normal distributio = }0.4772 \\ z2\text{ = }\frac{x\text{ - }\mu}{\sigma}\text{ = }\frac{25\text{ - 20}}{5}\text{ = }\frac{5}{5}\text{ = 1 z value of 1 from normal distribution = 0.3413} \end{gathered}[/tex]Pr( 10 <= x <=25 ) = 0.4772 + 0.3413 = 0.8185
= 0.8185 x 100%
= 81.9%
B) Pr( x >= 35 )
[tex]\begin{gathered} z\text{ = }\frac{35\text{ - 20}}{5} \\ z\text{ = }\frac{15}{5} \\ z\text{ = 3} \\ z\text{ value from normal distribution table = 0.4987} \\ =\text{ 0.4987 x 100\%} \\ =\text{ 49.87\%} \end{gathered}[/tex]Step 4:
A) 81.9%
B) 49.87%