Respuesta :

The given derivative is:

[tex]r^{\prime}(\theta)=9+\sec ^2\theta[/tex]

Integrate w. r. t. theta to get:

[tex]\begin{gathered} r(\theta)=\int (9+\sec ^2\theta)d\theta \\ =9\int d\theta+\int \sec ^2\theta d\theta \end{gathered}[/tex]

Use the formulae given by:

[tex]\int d\theta=\theta+c,\int \sec ^2\theta d\theta=\tan \theta+c[/tex]

To get the solution as follows:

[tex]r(\theta)=9\theta+\tan \theta+c[/tex]

The given point is P(pi/4,2) so it follows:

[tex]\begin{gathered} 2=9(\frac{\pi}{4})+\tan \frac{\pi}{4}+c \\ 2-\frac{9\pi}{4}-1=c \\ c=1-\frac{9\pi}{4} \end{gathered}[/tex]

Substitute the value to get the required answer as follows:

[tex]r(\theta)=9\theta+\tan \theta+1-\frac{9\pi}{4}[/tex]

The above function is the required answer.

RELAXING NOICE
Relax