Rational numbers are numbers that are expressed as the ratio of two integers, where the denominator should not be equal to zero.
Lets check for option A
[tex](3\sqrt[]{5})\text{ + (2}\sqrt[]{5}\text{) = 5}\sqrt[]{5}[/tex]Hence is not a rational number
Let's check for option B
[tex]\begin{gathered} (3\sqrt[]{5})\text{ - (2}\sqrt[]{5}\text{) = 1}\sqrt[]{5} \\ \Rightarrow\sqrt[]{5} \end{gathered}[/tex]option B is not a rational number
Let's check for option C
[tex]\begin{gathered} (3\sqrt[]{5})\text{ x (2}\sqrt[]{5}\text{) = 3 x 2 x 5} \\ \Rightarrow\text{ 6 x 5 } \\ \Rightarrow\text{ 30} \end{gathered}[/tex]Option C is a rational number
Let's check for option D
[tex]\frac{(3\sqrt[]{5})}{(2\sqrt[]{5})}=\frac{3}{2}[/tex]Hence option D is a rational number
Let's check for option E
[tex](2\sqrt[]{5})\text{ -(3}\sqrt[]{5}\text{) = -1}\sqrt[]{5}[/tex]Option E is not a rational number
Option F
[tex]\frac{2\sqrt[]{5}}{3\sqrt[]{5}}\text{ = }\frac{2}{3}[/tex]Option F is a rational number